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ABSTRACT 
Academic literature has documented for a long time the existence 
of important price gains in the first trading day of initial public 
offerings (IPOs). 

Most of the empirical analysis that has been carried out to date to 
explain underpricing through the offering structure is based on 
multiple linear regression. The alternative that we suggest is a 
rule-based system defined by a genetic algorithm using a 
Michigan approach. The system offers significant advantages in 
two areas, 1) a higher predictive performance, and 2) robustness 
to outlier patterns. The importance of the latter should be 
emphasized since the non-trivial task of selecting the patterns to 
be excluded from the training sample severely affects the results. 

We compare the predictions provided by the algorithm to those 
obtained from linear models frequently used in the IPO literature. 
The predictions are based on seven classic variables. The results 
suggest that there is a clear correlation between the selected 
variables and the initial return, therefore making possible to 
predict, to a certain extent, the closing price. 

Categories and Subject Descriptors 
I.2.6-Learning; J.4-Economics 

General Terms 
Algorithms 

Keywords 
Genetic algorithm, initial public offering, underpricing. 

1. INTRODUCTION 
Academic literature has documented for a long time the existence 
of abnormal first-day trading returns in initial public offerings 

(IPOs) that usually come as important price gains. That is, there is 
usually a big difference between the offering price and the closing 
price at the end of the first trading day. Ritter and Welch [29] 
report an average initial return of 18.8% on a sample of 6,249 US 
IPOs that took place between 1980 and 20011. 
This phenomenon has been puzzling researchers in Financial 
Economics for more than thirty years and has been the subject of a 
vast amount of academic work. Many theories have been 
postulated to offer explanations and it is still a very active field. 
The mentioned paper by Ritter and Welch is good reference to the 
state of the art. 
The use of Genetic Algorithms in financial prediction is hardly 
new. Many pieces of research have explored the suitability of this 
technique in areas such as trading [2], portfolio optimization [19] 
or bankruptcy prediction [32] but little has been done in IPO 
research. 
Most of the empirical analysis that has been carried out to date in 
order to explain underpricing through variables related to the 
offering, is based on multiple linear regression. Other than the 
seminal work of Jain and Nag [17] trying to predict first-day 
returns using Artificial Neural Networks, very few efforts have 
been done using artificial intelligence. We suggest new approach 
based on genetic algorithms that will be compared to the 
traditional instrument in terms of predictive performance. 
The rest of the paper will have the following structure: In Section 
2, we introduce the explanatory variables and describe the data. 
Section 3 deals with the methodology and Section 4 will be used 
to report the results of our empirical analysis. Finally, Section 5 
covers the summary and conclusions. 

2. VARIABLES AND DATA 
As a starting point, we provide a formal definition of the 
phenomenon we have been referring to as IPO underpricing. 

We define IPO underpricing as the percentage change of the share 
price from the offer to the closing price on first day of trading 
minus the return on the appropriate index or: 

 

 

                                                                 
1  Equally weighted average first-day return measured from the 

offer price to the first CRSP-listed crossing price. 
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Where Ri is the adjusted first day return for stock i; POi is the 
offering price for stock i; Pci is the closing price for stock i; Moi is 
the closing for the broad market index of the market where the 
stock i was floated for the day before the IPO and MCi is the 
closing for the broad market index of the market where the stock i 
was floated on the day of the IPO2. 

Once the target variable has been clearly described, we introduce 
the independent variables. 

2.1 Variables 
As we have already mentioned in the introduction, the amount of 
literature regarding IPO underpricing is quite remarkable. This 
fact makes the initial number of potential explanatory variables 
very high. However, there seems to be a number of them 
concerning the structure of the offerings that show up very often. 

These variables, which are about to be succinctly described, are 
the following: Underwriter prestige, price range width, price 
adjustment, offer price, retained stock offer size and relation to 
tech sector. 

2.1.1 Underwriter prestige (PRESTIGE) 
This is one of the factors whose influence has been studied the 
most, Hammond [26] [27] [8]. Our approach will be similar to the 
one suggested by Balbers et al [4]. The prestige of financial 
advisors will be modeled by a dummy variable. In case there is a 
prestigious underwriter in the role of lead manager of co-lead, the 
value will be one and zero otherwise. The label of “prestigious” 
will be granted to the financial advisors who were consistently 
among the 25 who underwrote more capital in the US during the 
years of the study. 

2.1.2 Price range width (RANGE) 
This variable represents the width of the non-binding reference 
price range offered to potential customers during the roadshow. 
This width can be interpreted as a sign of uncertainty regarding 
the real value of the company and a therefore, as a factor that 
could influence the initial return. Following Hanley [13], the 
representation to be used will be the difference between the 
maximum and minimum price divided by the minimum price.  

2.1.3 Price adjustment (P_ADJ) 
Benveniste and Spindt [5] and Hanley [13] suggest the relation 
between the final offer price and the mentioned price range might 
also be interpreted as sign of uncertainty. They state that this 
effect might be captured by the following expression. 

 

 

 

Where Pf is the final offer price and Pe is the expected price 
defined as the middle point of the price range. 

                                                                 
2  The indexes used in the analysis were:  S&P 500, NASDAQ 
Composite and AMEX Composite. 
 

2.1.4 Offering price (PRICE) 
The final offering price has been found to be a relevant variable 
not only as a part of the previous indicator, but on its own. 
Studies like [9] or [7], among others, support this idea. 

2.1.5 Retained stock (RETAINED) 
The influence of the capital retained by initial investors at the time 
of the IPO has been traditionally understood to have a signal the 
quality of the stock [20], [12] or [1]. Since we lack the breakdown 
of primary and secondary shares, we will proxy this variable 
through the ratio number of shares sold at the IPO divided by 
post-offering number of shares minus the number of shares sold at 
the IPO.   

2.1.6 Offering size (LSIZE) 
This variable is defined as the logarithm of the offering size in 
millions of dollars excluding the over-allotment option. Studies 
like [23], [14] and [16] support the need to include it in the 
models. 

2.1.7 Technology (TECH) 
The reason why we suggest a specific variable to control whether 
the industrial activities of a company are related to tech sector is 
the fact that they tend to show a higher underpricing. This fact is 
usually modeled by a dummy that equals one for tech companies 
[33] [21].  

Our labeling criterion is based on IPO Data System’s definition. 
This company publishes every year a report with the list of tech 
companies taken public based on US Standard Industry Codes. 
Hence, we will consider an IPO to be “tech” if it is in the list. 

2.2 Data 
The sample consists of 1,040 companies taken public between 
April 1996 and November 1999 in US stock markets. This 
includes AMEX, NASDAQ and NYSE IPOs and excludes 
American Depositary Receipts; closed-end funds; real state 
investment trusts and unit offerings. 

Our primary data source was Hoovers Online. The information 
was completed with IPO profiles and reports provided by IPO 
Data Systems. Index information was obtained from NASD 
(NASDAQ and AMEX composites) and Bloomberg (S&P 500). 

The main descriptive statistics (mean, median, maximum, 
minimum and standard deviation) for the sample of 1,040 IPOs 
considered in the analysis are reported in table 1. 

 

Table 1. Descriptive statistics 

 Mean Median Max Min Std. Dev.
RETURN 0.26 0.10 6.06 -0.32 0.52 

LSIZE 1.54 1.56 3.36 0.48 0.43 
P_ADJ 0.10 0.08 3.00 0.00 0.13 

PRESTIGE 0.57 1.00 1.00 0.00 0.49 
PRICE 11.89 12.00 34.00 3.50 4.81 

RANGE 0.16 0.16 1.33 0.00 0.09 
RETAINED 0.50 0.40 7.84 0.06 0.46 

TECH 0.29 0.00 1.00 0.00 0.45 
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3. METHODOLOGY 
The aim of this paper is to show a rule-based algorithm tool that 
could be very useful in IPO research. To prove it, we will 
compare its forecasting ability to the one achieved by the linear 
regression, the standard tool in the literature. 

In order to do that, we will break the sample in two subsamples. 
The first one, made of 840 IPOs, will be used as training set for 
the rule-based system. We will also fit the linear model on the 
very same sample. These two models will then be used to predict 
the rest of the original set of data. 

The system has the ability to anticipate which observations could 
lead to potentially inaccurate forecasts. Should this be the case, 
the system will not provide any estimate for the initial return. 

The accuracy of the predictions will be assessed comparing the 
normalized mean square error of the predictions of the models. 

3.1 Rule-Based System 
Genetic Algorithms [15][11][3][25] have already been used in 
prediction problems, mainly related to time series [28][20][22]. 
Following Packard's [28] prediction approach for dynamical 
systems, we introduce a rule-based system based on genetic 
algorithms. 

3.1.1 Model Description 
The system generates rules defined in the input variable space in 
order to make prediction in the output variable space. In this work 
we use the previously defined set of independent variables 
(LSIZE, P_ADJ, PRESTIGE, PRICE, RANGE, RETAINED and 
TECH) and RETURN as target variable. The process starts with 
the standardization of these values, which are forced within the 0 
and 1 range. At this point, we bring in the rules. These are asserts 
such as “if variable 1 is smaller than 0.9 and bigger than 0.13, 
variable 2 is smaller than 0.81 and bigger than 0.2, variable 4 is 
smaller than 0.94 and bigger than 0.01, and variable 7 is smaller 
than 9.9 and bigger than 0.45, then the prediction (for the output 
variable) will be 0.73, with an expected error of 0.03.  It could be 
expressed as 

IF (0.13<v1<0.9) AND (0.2<v2<0.81) AND (0.01<v4<0.94) 
AND (0.45<v7<0.99) THEN prediction = 0.73 +/- 0.03. 

This information is encoded in an individual as follows: 

(0.13, 0.9, 0.2, 0.81, dc, dc, 0.01, 0.94, dc, dc, dc, dc, 0.45, 0.99, 
0.73, 0.03) 

where dc means “don't care”. Figure 1 illustrates an individual. 
The genetic algorithm paradigm might be useful to evolve new 
rules such as the one we just mentioned. Two individuals can 
generate an offspring. This offspring inherits each gene from one 
parent, as shown in figure 2. A gene is a pair (LL,UL), where LL 
is  the lower limit for a variable, and UL is the upper limit for the 
same variable. In other words, the offspring receives a gene from 
each parent with equal probability for each variable. The offspring 
doesn't inherit parent's predictions and errors. Following the 
example above: 

Parent 1: (0.13, 0.9, 0.2, 0.81, dc, dc, 0.01, 0.94, dc, dc, dc, dc, 
0.45, 9.9, 0.73, 0.03) 

Parent 2: (0.14, 0.77, 0.13, 0.85, 0.11, 0.22, dc, dc, 0.32, 0.51, 
0.31, 0.66, 0.14, 0.27, 0.57, 0.06) 

Offspring: (0.13, 0.9, 0.13, 0.85, dc, dc, dc, dc, 0.32, 0.51, dc, dc, 
0.45, 9.9, ? , ?) 

Obviously, the offspring's “prediction” and “error” are not 
assigned (and therefore are represented as “?”). Once generated, 
an offspring may suffer a gene mutation. This event takes place 
with a 10% probability for each new individual. Should the 
individual be selected, one of its genes will be altered. In table 2, 
the mutations over the gene (LL,UL) are showed. R(x,y) means a 
random value between x and y with x < y, and W means the 10% 
of the width of the interval defined by (LL,UL), in other words, 
W=0.1 (UL-LL). Obviously, the transformation of (LL’,UL’) into 
(LL,UL) must fit the condition ( 0 ≤ LL’ < UL’ ≤ 0 ). Figure 3 
summarizes these alternatives. 

 

Table 2. Mutations 

Name Transformation 

New random value (LL,UL) → ( R(0,1), R(0,1) ) 

Null condition (LL,UL) → ( dc, dc ) 

Enlarge (LL,UL) → (LL-R(0,1)W, UL+R(0,1)W ) 

Shrink (LL,UL) → (LL+R(0,1)W, UL-R(0,1)W ) 

Move up (LL,UL) → (LL+cW, UL+cW ) 

c = R(0,1) 

Move down (LL,UL) → (LL-cW, UL-cW ) 

c = R(0,1) 

 
 

Figure 1. Graphical representation of an individual 
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Figure 2. Crossover process 

 

 
Figure 3. Mutation process 

3.1.2 Fitness 
The computation of fitness follows the idea suggested by Packard 
[28], by which good individuals are characterized by uniform 
values for the dependant variable across matching patterns. The 
assessment of these individuals (rules), does not take into account 
the forecasts, which are made at a later stage. Any individual has 
two associated parameters, a prediction and an error measure. Let 
C be an individual and i a training pattern. If the value of the 
variables for pattern i meet the requirements of C, we will say 
C(i)=true, otherwise C(i)=false. The prediction assigned to the 
rule will be derived by averaging the target variable of the patterns 
from the training sample that fulfill the requirements specified by 
C. The error magnitude, E, is the maximum absolute difference 
between the predicted value, p_i, and the real value, v_i, of the 
matching training patterns divided by the number of patterns in 
the training sample that meet rule C. 

E=Max i {|p_i-v_i| / C(i)} 

The model favors individuals with the ability to predict the 
highest number of patterns with the lowest possible error. The 
specific fitness function that we use is: 

IF ((N_C>1) AND (e < EMAX)) THEN fitness = (N_C*100) – C 

ELSE fitness = f_min 

where C is the individual, and N_C is the number of training 
patterns that match C (in other words, N_C=#{i / C(i)}). EMAX is 
a constant for punishing individuals with a variance greater than 
its own value, and f_min is the lowest value assigned to the 
individual when the rule is not fitted. 

3.1.3 Evolution of simple rules 
Within the two main approaches to system design in Evolutionary 
Computation, Michigan and Pittsburgh, the second has 
traditionally been more widely used [34][18][10]. In this 
approach a solution is defined by an individual, and the 
population is made of a number of different alternatives.  
Michigan approach [6], however, defines the solution by the 
whole population. Each individual is just a piece of the solution, 
or the solution to a part of the domain. 
The use of genetic algorithms in IPOs faces a major difficulty, 
namely, the presence of a number of outliers that are hard to 
characterize. In these cases, there are unusually high differences 
between the offering price and the closing price at the end of the 
first trading day or very extreme values of the independent 
variables. When using the Pittsburgh approach, each individual 
tries to predict the whole set of data, and usually only standard 
behaviors are characterized. Should this be the case, unexpected 
behaviors are not considered, which leads to poor predictions. 
This factor justifies the choice of a Michigan approach, since it 
results in each individual being specialized in a section of the 
input space and, therefore, providing forecasts only for those 
patterns within its range of capability. Since the population as a 
whole is used like a set of rules to predict most of the data set, it is 
possible to evolve individuals that are specialized in those unusual 
cases, while others evolve focused on the bulk of the data with a 
regular behavior. 
An additional benefit of encoding the solution in the whole 
population is the reduction in the size of individuals. This 
accelerates their evaluation, which is crucial in some domains.  
We apply Michigan's approach selecting only two parents by three 
rounds trial each generation to produce a single offspring, 
following a Steady-State strategy This is subsequently used to 
replace the closest individual in terms of phenotypic distance. 
That is, we find the individual whose prediction is nearest to the 
offspring's prediction, and replace it by the offspring if and only if 
the offspring fitness is better than the individual's fitness. If this 
doesn't happen, there isn't any change this generation. That 
strategy generates a diverse population, in which each individual 
makes a prediction that is different to the rest instead of genetic 
clones of the best individual, produced by the standard genetic 
algorithm method. Finally, after each execution of the model 
(500.000 generations), we store in a file, that we call “rule pool”, 
individuals that predicts more than 20 points in the training set 
(and not only one as we would do in a standard genetic algorithm 
model). This process is repeated many times and a file with a set 
of individuals is generated. Some individuals predict the same 
patterns of the test set, so the final prediction is the mean of all 
predictions (we must remember that, possibly, not all the 
individuals could make a prediction for a pattern). 
The generation of the initial population hasn’t been explained yet. 
We divide the prediction range (i.e., the interval [0,1]) in 100 
subintervals that are 0.01 wide. We create an individual for each 
prediction interval. For example, for interval [0.34, 0.35] we 
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search for all the patterns i in the training set such that the 
predicting value p(i) is in the [0.34,0.35] interval, and we create 
an individual with an upper and lower limit for every input 
variable. For each input variable xj the upper limit must be the 
minimum number U such that for each pattern i with predicting 
value p(i) in the [0.34,0.35] interval, the value of xj is less than U. 
Accordingly, we select the lower limit for xj as the maximum L 
such that for each pattern i with predicting value p(i) in the 
[0.34,0.35] interval, the value of xj is greater than L. We repeat 
the process for each variable and interval to generate the initial 
population of 100 individuals and so we can assure that there is an 
individual in each interval of prediction. 

3.2 Regression 
The basic linear model that we use is the standard cross-sectional 
ordinary least squares regression, which will be initially fitted to 
the 840 training sample. However, given the sensitivity of the 
model to the presence of outliers, a robust alternative, least 
trimmed squares regression [30], will also be considered. We will 
use three trimming constants (424, 600 and 800), being the first 
one the maximum breakdown point as suggested by Rousseew 
and Leroy [31].  

The pattern selection criterion used in the test sample deserves an 
explanation. Given that the rule-based system will not provide 
initial return forecasts for a number of IPOs that are expected to 
be hard to predict, we need a filtering criterion to be used with the 
regression in order to allow for meaningful model comparisons. 
The solution that we suggest is based on the standard forecast 
errors. 

This measure is an indicator of the expected accuracy of the 
predictions made. High variability of forecasts leads to higher 
potential prediction errors and, therefore, lowers performance. 
Hence our choice of discarding from the test sample those IPOs 
that present the highest standard forecast errors. The number of 
patterns to be excluded is the number of IPOs discarded by the 
rule system. 

4. EMPIRICAL ANALYSIS 
4.1 Rule-Based System 
The data was subject to several experiments using the described 
model in order to carry out the prediction task. The first step was 
computing the best value for the constant EMAX, referred in 
section 3.1.2. The lower value it has, the lower prediction error 
we get, but as a side effect, we simultaneously reduce the number 
of patterns that we are able to forecast. The results of the 
experiments done to identify the optimal value of EMAX, as are 
shown in table 3. We used a set of 840 patterns for these 
experiments. For each value of EMAX, we ran the model 5 times 
(adding the rules to the “rules pool” each time), and the best 
equilibrium between percent of prediction and prediction error 
was attained with a value of 0.15. Once this value was selected, 
more thorough experiments were carried out (the system was ran 
25 times). This time, the prediction percentage increased to 90%, 
the normalized mean square error was 0.433 and the mean 
absolute error (for the normalized between 0 and 1 output) was 
0.055. Cross-validation analysis was done to test the robustness of 
this prediction rule search scheme. We selected 200 new patterns 
from the training set to the validation test, and added the previous 

200 validation patterns to the training set. The results are reported 
in table 4. 

Table 3. EMAX experiments 

EMAX value NMSE Percent of 
prediction 

0.05 0.47638 32.5% 
0.1 0.44031 61.5% 

0.15 0.39520 80.5% 
0.2 0.63399 84.0% 

0.25 0.44392 85.0% 
0.35 0.61332 91.5% 
0.45 0.70942 95.5% 
0.5 0.88462 89.5% 
0.6 0.89787 93.5% 

 

Table 4. Cross-validation 

Segment in data 
for validation NMSE Percent of 

prediction 
[840,1040] 0.43267 90% 

[0,200] 0.43631 88.5% 
[200,400] 0.38950 87.5% 
[400,600] 0.45244 89.5% 

 
4.2 Regression 
The linear models were fitted on the training set and used to 
forecast the 200 pattern test set. Table 5, reports the performance 
of the different models used. 

Table 5. Cross-sectional regressions 

Linear model Trimming 
constant 

NMSE  
Test 

NMSE 
Test-20 

OLS - 0.92302 0.77238 
LTS 424 0.98268 0.87663 
LTS 600 1.03793 0.96238 
LTS 800 0.94482 0.88741 

 

The best model offered a normalized mean square error of 0.923 
for the whole test sample. All of the suggested explanatory 
variables were significant at the 5% conventional level. 

As we mentioned before, we allowed the regression to discard the 
same number of patterns that was discarded by the rule system 
(20). As a result, the normalized mean square error goes down to 
0.772, which is a clear improvement, but still underperforms the 
rule system. 

5. SUMMARY AND CONCLUSSIONS 
In this paper we have discussed an implementation of a genetic 
algorithm to predict the underpricing of IPOs. The predictions are 
based on seven variables identified by literature review and their 
accuracy has been compared to the forecasts provided by a set of 
linear regressions.  

In this domain, we have to deal with outliers that make prediction 
particularly difficult. In order to overcome this problem, we 
suggest a rule system based on a genetic algorithm with a 
Michigan approach. The system identifies local rules to be used 

987



with patterns that show similar behavior so that we get local 
predictions instead of general rules. 

Following this scheme, we obtain predictions for 90% of the test 
sample. The system doesn’t find correlation between the patterns 
in the remaining 10% that we cannot forecast. In order to make 
the predictive performance comparable, we discard from the 
forecasts made by the regressions the 10% that are more likely to 
be the worst. 

The results show significant differences in favor of the rule 
system, which beats the regression by 49% in terms of normalized 
mean square prediction error. This fact suggests that IPO research 
would benefit from the use of this tool and we understand that so 
would any prediction effort in domains where the above 
mentioned factor is applicable. 
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